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EXECUTIVE SUMMARY 

Damage tolerance requirements have a major influence on the design of aircraft structures made 
of composite materials. Numerous studies have been devoted to the problem of predicting failure 
in notched laminates. These investigations have generally focused on the response of laminates 
to in-plane tension, compression, or shear. However, out-of-plane bending, twisting, or shear is a 
reasonably common load situation in aircraft structures. For example, in an aircraft fuselage, the 
skin experiences this type of load in the vicinity of stiffening members, such as frames and 
stringers. Very little research has been devoted to this topic. The primary goal of this research 
was to develop analysis techniques that are useful for the design of composite aircraft structure 
subjected to general out-of-plane loading. This project was limited to the out-of-plane bending 
case and focused on some very basic experiments and modeling efforts involving simple 
structures (center-notched, unstiffened laminates) under pure bending. In partnership with The 
Boeing Company, Oregon State University investigated the failure modes of the laminates and 
evaluated the capability of some currently existing analysis techniques for predicting failures. 
The project was divided into five main tasks. 
 
Task 1 involved testing notched laminates under four-point bending. Two notch lengths were 
considered: a 1-inch-long ovaloid hole with a 0.125-inch end radius and a 4-inch-long ovaloid 
hole with a 0.125-inch end radius. Two laminate thicknesses were studied: 20 and 40 plies. For 
each thickness, three laminate types were studied: one with 10% 0° plies, one with 30% 0° plies, 
and one with 50% 0° plies. The moment required for failure was measured for each specimen. 
During the tests, the 20-ply laminates exhibited negligible visible damage before failure, which 
was sudden and usually resulted in the laminate breaking into two pieces. The 40-ply laminates 
exhibited a gradual progression of damage that usually began with wrinkling of the outer ply on 
the compression side. This was followed by delamination at the outermost 0° ply and fracture of 
the plies between the outermost 0° ply and the surface. There was also some delamination 
between the second outermost 0° ply and the surface. The tension side of the laminate generally 
exhibited considerably less visible damage. In some cases, it was observed that the plies between 
the outermost 0° ply and the surface buckled before fracturing. 
 
Task 2 involved modeling stress concentrations in notched laminates under bending. The general 
purpose finite element analysis program ABAQUS® was used to construct models of each 
laminate tested under four-point bending. Individual plies were modeled using two 3-D solid 
elements through the thickness of each ply. Less detailed models were also constructed using 
conventional shell elements to determine the level needed for acceptable accuracy. The elastic 
strain concentration factor near the notch was influenced by transverse shear effects, and these 
should be included in finite element models. Three-dimensional, free-edge effects were also 
evident, but these effects dissipated rapidly with distance from the edge. 
 
Task 3 involved evaluating several semi-empirical failure models to be used for the preliminary 
design of the out-of-plane bending case. These models have been shown to be useful in 
estimating failure loads for notched laminates for the in-plane tension case. The point stress, 
point strain, and modified singularity criteria were examined. The point stress criterion predicted 
failure to occur when the stress at some critical distance (d) ahead of the notch tip reaches the 
unnotched strength of the laminate. The point strain criterion was similar but used strain values 
rather than stress. The modified singularity method used classical fracture mechanics but with a 
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material-dependent singularity value rather than the traditional square root. After modifying 
these theories to account for bending and applying the test results, they did not appear to be 
effective tools for using small notch data to predict failure for laminates with larger notches 
under bending. 
 
Task 4 involved modeling progressive damage in notched laminates under bending. The 
progressive damage model for composites in ABAQUS was used to simulate the growth of the 
notch up to ultimate failure for each laminate tested in four-point bending. This provided a test of 
the validity of this model for a loading condition that was not considered previously. Two types 
of finite element models were constructed—one that allowed delamination between plies and 
another that did not. The one that did not allow delamination was reasonably accurate in 
predicting the failure load for the 20-ply laminates but generally overestimated the failure load 
for the 40-ply laminates. This was expected because only the 40-ply laminates exhibited 
delamination as an important failure mechanism in the tests. The model that allowed 
delamination was generally in better agreement with the test results for the 40-ply laminates. 
These models also showed good agreement with the test results for the 20-ply laminates. The 
overall conclusion was that the progressive damage model appears to be a useful tool in 
predicting failure in notched laminates under bending and is capable of replicating a complex 
delamination response. 
 
Task 5 involved a study of the sensitivity of the laminate failure load to the parameters that go 
into the progressive damage model. This was accomplished by performing a systematic series of 
numerical experiments using design-of-experiments methodology. The overall conclusion from 
these results is that the final failure of notched laminates under bending is dominated by the ply 
properties in the fiber direction. Also, large changes in these properties (±20%) tend to produce 
small changes in failure load (<±7%). The relatively low sensitivity of failure load to these 
properties is a desirable outcome because it indicates a progressive damage analysis will not 
require that highly accurate values of these properties be determined experimentally. Initial 
failure is sensitive to these properties. 
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1.  INTRODUCTION 

The design of aircraft structures made of composite materials is heavily influenced by damage 
tolerance requirements. The problem of predicting failure in notched laminates has been the 
subject of numerous studies. In general, these investigations focused on the response of 
laminates to in-plane tension, compression, or shear. However, out-of-plane bending, twisting, or 
shear can be present. For example, in an aircraft fuselage, the skin will experience this type of 
load in the vicinity of stiffening members, such as frames and stringers. Very little research has 
been devoted to this topic [1–4]. As a result, the response of notched laminates subjected to  
out-of-plane loads is not well understood. This uncertainty could lead to unnecessarily 
conservative design. 
 
Analysis techniques are needed that are useful for the design of composite aircraft structures 
under out-of-plane loading. The development of these techniques is complicated by several 
factors. First, for out-of-plane loading, the laminate does not experience a uniform strain through 
its thickness as in the in-plane loading case. This likely results in progressive damage 
development up to final failure that is quite different from the in-plane loading case. In 
homogeneous metal structures, all failure modes (I, II, and III) can occur simultaneously at the 
notch tip during combined bending and shear or twist. The composite laminate case would be 
expected to be even more complex. Models capable of simulating this behavior will likely 
require an unusual degree of sophistication. Also, the development of analysis techniques 
requires significant experimental support to guide the development of the theoretical models. 
Unfortunately, there is very little test data currently available for the out-of-plane loading case. 
 
The primary goal of this research was to develop analysis techniques that are useful for the 
design of composite aircraft structure subjected to general out-of-plane loading. These 
techniques should be accurate, efficient, and suitable for implementation into existing design 
methodology. The various analytical models that are developed must have the appropriate level 
of sophistication to meet the designer’s needs from simple hand calculations to computer 
simulation of complex, ply-level response exhibiting multiple failure modes. The models also 
need to be thoroughly validated through tests from small coupons to large configured structure. 
The realization of this goal is beyond the scope of a single project. The focus in this study was on 
some very basic experiments and modeling efforts involving simple structures (center-notched, 
unstiffened laminates) under pure bending. For a limited number of tests, the modes of failure of 
the laminates were determined and the capability of a currently existing analysis technique for 
predicting these failures was evaluated. 
 
Accomplishing the objective required both experimental and computational efforts. The project 
was divided into five main tasks.  
 
1. Task 1 involved testing notched laminates under four-point bending. Two notch lengths 

were considered: a 1-inch-long ovaloid hole with a 0.125-inch end radius and a  
4-inch-long ovaloid hole with a 0.125-inch end radius. Two laminate thicknesses were 
studied: 20 and 40 plies. For each thickness, three laminate types were studied: one with 
10% 0° plies, one with 30% 0° plies, and one with 50% 0° plies. The failure moment was 
measured for each specimen. The material used to fabricate the test specimens was 
provided by the Boeing Corporation. It was a direct representation of the materials and 
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lay-ups used in their products and therefore considered company proprietary. Though this 
precludes the release of the raw test data from this task, it did ensure that data, and the 
limits of validity of the models created from the data, covered the space of interest. 

2. Task 2 involved modeling stress concentrations in notched laminates under bending. The 
general purpose finite element analysis (FEA) program ABAQUS® was used to construct 
models of each of the laminates tested under four-point bending. Individual plies were 
modeled using two 3-D solid elements through the thickness of each ply. Less detailed 
models were also constructed using conventional shell elements to determine the level 
needed for acceptable accuracy. 

3. Task 3 involved evaluating several semi-empirical failure models to be used for 
preliminary design for the out-of-plane bending case. These types of models have been 
shown to be useful in estimating failure loads for notched laminates for the in-plane 
tension case. 

4. Task 4 involved modeling progressive damage in notched laminates under bending. The 
progressive damage model for composites in ABAQUS was used to simulate the growth 
of the notch up to ultimate failure for each laminate tested in four-point bending. This has 
provided a validity test of this model for a loading condition that was not considered 
previously. 

5. Task 5 involved a study of the sensitivity of the laminate failure load to the parameters 
that go into the progressive damage model. This was accomplished by performing a 
systematic series of numerical experiments using a design of experiments methodology. 

The results for Task 2 through Task 5 are described in the following sections. The results for 
Task 1 are not separately presented but are discussed in the context of the other tasks. This is 
because of the proprietary nature of most of that data as described above. 
 
2.  TASK 2: MODELING STRESS CONCENTRATIONS IN NOTCHED LAMINATES 
UNDER BENDING 

For design to ultimate load, stress concentration factors are needed for notches around 
configured structure. The analysis of stresses around notches in plates subjected to out-of-plane 
bending has been the subject of a number of investigations. Typically, this analysis consists of a 
plate (usually of infinite extent) with thickness (h) containing a notch. The typical loading 
situation consists of a uniform bending moment (Mo) in one direction. Analyses have been 
carried out using two plate theories: Kirchhoff Plate Theory (KPT), which ignores the effect of 
transverse shear deformation (this is also referred to as classical theory), and Reissner Plate 
Theory (RPT), which accounts for the effect of transverse shear deformation. For uniform 
bending of a homogeneous, isotropic plate, the far-field normal stress is linear through the 
thickness with a maximum value at the plate surface of 
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At the notch, a stress concentration is normally expressed as σmax = kbσb. Using KPT, Goodier [5] 
studied stresses around a circular hole with radius (a) in an isotropic plate and found the stress 
concentration factor as 
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where ν is Poisson’s ratio. Reissner [6] developed his theory taking transverse shear deformation 
effects into account and found  
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where μ = (10)1/2a/h and K0 and K2 are modified Bessel functions. Here, the stress concentration 
factor depends on a/h, as shown in figure 1, where kb varies between 3 for a very thick plate (a/h 
small) to Goodier’s KPT result for a very thin plate for ν = 1/4. A 3-D elasticity solution 
developed by Alblas [7] is also shown in figure 1. Improvements to the theory were later 
presented by Lee [8] and Reissner [9]. Goodier [5] also studied stresses around an elliptical hole 
(with major axis a and minor axis b) in an isotropic plate using KPT and found the stress 
concentration factor as  
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Figure 1. Stress concentration factor for a homogeneous, isotropic plate under bending 

Naghdi [10] studied the same case using RPT and was able to determine an approximate value 
for kb in terms of Mathieu functions for the case when the elliptical hole is not too slender. 
 
The results described above are not directly applicable to notched laminates because of the 
anisotropic nature of these materials. The extension of KPT to orthotropic materials is reasonably 
straightforward. The case of a circular hole in an orthotropic plate under bending was studied by 
Leknitskii [11] where kb is given as  
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knkb 4
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where k, n, and g are functions of the flexural moduli D11, D22, D12, and D66. Prasad and Shuart 
[12] extended Leknitskii’s [11] results to the case of an elliptical hole in an orthotropic plate. 
Here, the solution is sufficiently complex that it is not possible to develop an explicit expression 
for kb. Material anisotropy was found to have a significant effect on the stress concentration 
factor. The extension of RPT to orthotropic materials usually does not allow for analytical 
solution and requires an FEA. Paul and Rao [13 and 14] performed such analyses for a finite, 
simply supported plate under a uniform pressure containing either a circular or elliptical hole. 
 
For the case when the notch is a sharp crack, Zendher and Viz [15] give a summary of results 
using KPT for isotropic materials. Here, the stress intensity factor is 
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Results for RPT are given in Wu and Erdogan [16] for ν = 0.3. They found that k1 depends on 
a/h, with k1 = σba1/2 for a/h→0 and k1 = 0.63 σba1/2 for a/h→∞. Simmonds and Duva [17] 
concluded that the strain energy release rates calculated from KPT and RPT should be the same 
as a/h→∞. This led to the conclusion that the k1’s for the two theories should differ by a factor of 
[(1 + ν)/(3 + ν)]1/2, which is equal to 0.63 for ν = 0.3. Wu and Erdogan [16] also considered the 
orthotropic material case and found that orthotropy can have a significant influence on the  
stress-intensity factor. 
 
For aircraft structures made of composite materials, designers have traditionally relied on 
Leknitskii’s [11] work (which is based on KPT), because of the availability of analytical 
solutions. The objective of the current study is to investigate the validity of this approach by 
comparing the results from KPT to those from the more accurate solutions provided by RPT and 
3-D elasticity theory. This was accomplished by performing finite element analyses using the 
commercial program ABAQUS on laminates with several different types of notches as described 
in the following sections. 
 
2.1  FINITE ELEMENT MODELS 

A variety of notch sizes ranging from small fastener holes to larger-scale penetration damage 
were modeled. Three different notch types were analyzed: a 0.25-inch-diameter hole, a  
1-inch-long ovaloid, and a 4-inch-long ovaloid in laminates under pure bending. The ovaloids 
were slits with rounded tips (0.125-inch radius) and represent blunt, crack-type notches (see 
figure 2). This provided a 0.25-inch gap between the surfaces of the slit, which prevented the 
surfaces from coming into contact on the compression side of the laminate during bending. Six 
different laminates were investigated, including two laminate thicknesses: 20 and 40 plies. For 
each thickness, three laminate types were studied: one with 10% 0° plies, one with 30% 0° plies, 
and one with 50% 0° plies. 
 

 

Figure 2. Ovaloid notch in a plate 

Three types of finite element models were constructed: (1) shell elements without transverse 
shear effects, (2) shell elements with transverse shear effects, and (3) quadratic 3-D continuum 
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solid elements with two elements through the thickness of each ply (using more than two 
elements through the thickness of each ply was found to have negligible effect of the solution). 
The mesh for the 20-ply laminate with a 0.25-inch-diameter hole modeled with 3-D solid 
elements is shown in figure 3, where one-half of the plate is modeled. Although this symmetry 
assumption is not strictly valid because of weak coupling between bending and twisting, it has a 
negligible effect on the strain concentration. The plate width-to-hole diameter ratio is 10. To save 
computing time, the region on the plate away from the hole was modeled with shell elements 
with appropriate coupling constraints across the solid-shell interface (modeling the entire 
laminate with solid elements gave results that were within 1 percent of those of the current 
model). The meshes for laminates with a 1-inch-long notch and a 4-inch-long notch are shown in 
figures 4 and 5, respectively. The mesh for the laminates modeled completely with shell 
elements had the same planar density as the solid element meshes. To verify the models, a 
calculation was performed on a homogeneous, isotropic material with a circular hole (the values 
obtained using the shell element model with transverse shear effects and the 3-D solid element 
model for the two thicknesses considered are compared with the analytical solutions in figure 1). 
The slight difference between the FEA results and the analytical solutions is likely due to finite 
width effects. 

 

Figure 3. Finite element mesh for the 20-ply laminate 

 

Figure 4. Finite element mesh for a 1-inch-long notch 
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Figure 5. Finite element mesh for a 4-inch-long notch 

2.2  RESULTS 

Because of the discontinuous nature of the stress distribution through the thickness of the 
laminate, it is probably more useful to consider strain concentration factors rather than stress 
concentration factors. In composite aircraft design, the strain in the outermost 0° ply is frequently 
used as a design limiter. Therefore, the focus was on the strain in this ply. The strain distributions 
through the thickness of the 20-ply laminate with 10% 0° plies at the edge of the  
0.25-inch-diameter hole from both the 3-D solid model and the two shell models are shown in 
figure 6. As expected, the strains from the shell models are linear through the thickness. The 
strain from the 3-D solid model is nearly linear, except for two pronounced bulges in the location 
of the 0° plies. The strain distribution predicted by the 3-D solid model appears to be a free-edge 
effect (where singularities in stress are known to exist at ply interfaces). This becomes apparent 
when observing the strain distribution through the thickness predicted by the three models at a 
point 0.025-inch away from the edge of the hole. This is shown in figure 7. Here, the three strain 
distributions are in relatively good agreement. This same conclusion can be reached by 
examining the results for the 40-ply laminate. The discrepancy in results predicted by the 3-D 
solid model and the shell models is quite likely caused by a free-edge effect. It is known that 
singularities in transverse shear and normal stresses exist at ply interfaces on a free edge. These 
large stresses would render invalid the usual assumptions of plate theory. Several other laminated 
plate theory assumptions that involve neglecting gradients in the twisting moment may also be 
violated. Therefore, it is not surprising that the results would differ. 
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Figure 6. Strain distributions through the thickness at the edge of a 0.25-inch-diameter hole 
in a 20-ply laminate with 10% 0° plies 

 

Figure 7. Strain distributions through the thickness at a point 0.025 inch away from the 
edge of a 0.25-inch-diameter hole in a 20-ply laminate with 10% 0° plies 

A strain concentration factor was calculated based on the maximum strain the in outermost 0° 
ply for each laminate and notch size using the three types of models. These results are shown in 
figures 8–13. In each case, the 3-D solid model predicted a higher strain concentration factor 
than the two shell models. For the 0.25-inch-diameter hole, the strain concentration factor 
predicted by the shell model with transverse shear effects was, on average, 38% higher than what 
was predicted by the shell model without transverse shear effects. For the 1-inch-long notch, it 
was 31% higher. For the 4-inch-long notch, it was 23% higher. For the 0.25-inch-diameter hole, 
the strain concentration factor predicted by the 3-D solid model was, on average, 100% higher 
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than what was predicted by the shell model without transverse shear effects. For the 1-inch-long 
notch, it was 76% higher. For the 4-inch-long notch, it was 62% higher. 
 

 

Figure 8. Strain concentration factor vs notch length for a 20-ply laminate  
with 10% 0° plies 

 

Figure 9. Strain concentration factor vs notch length for a 20-ply laminate  
with 30% 0° plies 
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Figure 10. Strain concentration factor vs notch length for a 20-ply laminate 
with 50% 0° plies 

 

Figure 11. Strain concentration factor vs notch length for a 40-ply laminate 
with 10% 0° plies 

 

Figure 12. Strain concentration factor vs notch length for a 40-ply laminate 
with 30% 0° plies 
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Figure 13. Strain concentration factor vs notch length for a 40-ply laminate 
with 50% 0° plies 

3.  TASK 3: EVALUATION OF SEMI-EMPIRICAL MODELS 

3.1  THEORY 

Several semi-empirical failure criteria have been shown to be useful in estimating failure loads 
for notched laminates for the in-plane tension case [18]. The most commonly used are the point 
stress, point strain, and modified singularity criteria. The point stress criterion, developed by 
Whitney and Nuismer [19 and 20], predicts failure to occur when the stress at some critical 
distance (d) ahead of the notch tip reaches the unnotched strength of the laminate. The point 
strain criterion, developed by Poe and Sova [21 and 22], is similar but uses strain values rather 
than stress. The modified singularity method developed by Mar and Lin [23 and 24] uses 
classical fracture mechanics but with a material-dependent singularity value rather than the 
traditional square root. 
 
The usefulness of this type of model for preliminary design was reported [25] for the  
out-of-plane bending case. This requires formulas for the internal bending moments per unit 
length in the vicinity of a notch in an orthotropic plate under bending. The solution to this 
problem using classical plate theory was developed by Prasad and Shuart [12]. They considered 
the case of an elliptical hole in an infinite plate, as shown in figure 14. They used complex 
variable techniques to solve the plate equation  
 

 

4 4 4 4 4

11 16 12 66 26 224 3 2 2 3 44 2( 2 ) 4 0w w w w wD D D D D D
x x y x y x y y

∂ ∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 (5) 

 
where w is the transverse displacement and D11, D12, D22, D16, D26, and D66 are the terms from 
the bending stiffness matrix that relates the internal bending moment per unit length matrix {M} 
to the plate curvature matrix {κ} through the equation 
 
 { } [ ]{ }M D= κ  (6) 
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Figure 14. Elliptical hole in a plate under bending 

The interest here is in the case where the far-field loading is such that Mx = M0, Mxy = 0, and 
My = 0. For this case, the internal bending moments are 
 

 0 1 1 1 2{1 2Re[ ( ) ( )]}xM M p z q z= − ϕ + ψ  (7) 
 

 0 2 1 2 22 Re[ ( ) ( )]yM M p z q z= − ϕ + ψ  (8) 
 
where z1 and z2 are complex variables defined as 
 
 1 1 2 2,z x s y z x s y= + = +  (9) 
 
and s1 and s2 are roots of the characteristic equation 
 

 
4 3 2

22 26 12 66 16 114 2( 2 ) 4 0D s D s D D s D s D+ + + + + =  (10) 
 
given as 
 
 1 1 1 2 2 2 3 1 4 2      s i s i s s s s= α + β = α + β = =  (11) 
 

( )1zϕ  and ( )2zψ  are complex functions defined as 
 

 

1 1
1 2 2 2 2 1/2

1 1 1

( ) 1
[ ( )]

N zz
a is b z a s b

 
ϕ = − + − + 

 (12) 
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 2 2
2 1/22 2 2 2

2 2 2

( ) 1
( )

N zz
a is b z a s b

 
 ψ = −
 +  − +  

 (13) 

 
where 
 

1 2 2 1 2 2
2 1 1 2 1 1

1 11
1

1 2 2 2 1 1 2 1 2
1 2 2

2

( ) ( ) ( ) ( )

2( )
( ) ( )

p q s p q sA iB p q a is b A iB p q a is b
s ssN

p q s p q s q q sC iD q q a is b
s

    
+ − + + − − +    

    =  −   + − − +    

 (14) 

 
2 1 1 2 1 1

1 2 1 1 2 2
1 22

2
1 2 2 2 1 1 2 1 1

1 2 2
2

( ) ( ) ( ) ( )
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−     =  −   + − − +    

 (15) 

 

 
2

1 11 12 1 1 162p D D s s D= + +  (16) 
 

 
2

2 12 22 1 1 262p D D s s D= + +  (17) 
 

 
2

3 16 26 1 1 662p D D s s D= + +  (18) 
 

 
2
12666121161114 )2(3/ sDDDsDsDp ++++=  (19) 

 

 
2

1 11 12 2 2 162q D D s s D= + +  (20) 
 

 262
2
222122 2 DssDDq ++=  (21) 

 

 662
2
226163 2 DssDDq ++=  (22) 

 

 
2
22666122162114 )2(3/ sDDDsDsDq ++++=  (23) 

 
and A, B, C, and D are solutions to the set of equations 
 
 1 12Re[ ( ) ( )] 1p A iB q C iD− + + + =  (24) 
 
 0)]()(Re[2 22 =+++− iDCqiBAp  (25) 
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 0)]()(Re[2 33 =+++− iDCqiBAp  (26) 
 
 0)]()(Re[2 44 =+++− iDCqiBAp  (27) 
 
A computer program was written to solve equations 24–27 and evaluate the internal bending 
moments per unit length in equations 7 and 8. Next, the concepts from references 19–24 were 
extended from the tension loading case to the out-of-plane bending case to compute the failure 
loads. The notch was assumed to be a crack (i.e., a = 0; this assumption is required to apply the 
point strain criterion and modified singularity criterion). A comparison of the results from 
tension and bending are given below. 
 
• Point Stress Criterion (Whitney-Nuismer) 
 

Tension 
 

 

2

21
( )n u

b
b d

σ = σ −
+

 (28) 

 
Bending 
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= + 
 

 (29) 

 
• Point Strain Criterion (Poe-Sova) 
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Bending 
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 (31) 

 
• Modified Singularity Criterion (Mar-Lin) 
 

Tension 
 

 
n n

H
b

σ =
 (32) 

 
Bending 

 

 nn b
HM =  (33) 

 
where σn is the notched tensile strength, σu is the unnotched tensile strength, Mn is the notched 
bending strength, and Mu is the unnotched bending strength. The crack half-length is b, d is a 
characteristic length that is a material property, and d11 and d12 are terms from the inverse of 
matrix [D]. H is the laminate fracture toughness, and n is the order of the singularity at the crack 
tip. In each case, the notched bending strength has the same form as its tension counterpart. 
 
3.2  COMPARISON OF THEORY AND TEST RESULTS 

Each criterion contains empirical parameters that must be determined from test results. The point 
stress and point strain criteria require values for Mu and d; but the modified singularity criterion 
requires values for H and n. The results from tests on two types of laminates: one with 50% 0° 
plies and the other with 30% 0° plies were used. Both laminates were 20 plies thick. The notched 
bending strength Mn was determined from experiments on laminates with two notch lengths: 1 
and 4 inches (the notches in the tests were ovaloids with 0.125-inch end radii rather than sharp 
cracks [see section 4.1]). From these results the empirical parameters were calculated∗. Then, 
plots of notched bending strength Mn versus notch length 2b were generated for the two types of 
laminates, as shown in figures 15 and 16. 

                                                 
∗ This approach is backward compared to the traditional approach of determining Mu from a coupon test on an 
unnotched specimen, followed by determining d from a test on a specimen with a 0.25-inch-diameter hole. The 
traditional approach was not used because it would have required disclosure of confidential information from the 
Boeing database. 
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Figure 15. Failure moment vs notch length for a laminate with 50% 0° plies 

 

Figure 16. Failure moment vs notch length for a laminate with 30% 0° plies 

Though the point strain and modified singularity criteria require the assumption of the notch 
being a sharp crack, the point stress criterion allows for the possibility of the notch being an 
ellipse. Although the notches in these tests were ovaloids rather than ellipses, it is common 
practice to calculate the stress concentration factor for an ovaloid using an equivalent ellipse that 
has the same length and same tip curvature as the ovaloid. Repeating the calculations for this 
case had negligible effect on the results. 
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4. TASK 4: MODELING PROGRESSIVE DAMAGE IN NOTCHED LAMINATES UNDER
BENDING 

4.1  TEST SETUP 

Tests were performed on center-notched, unstiffened laminates consisting of three laminate types 
(10% 0°, 30% 0°, and 50% 0° plies), two laminate thicknesses (20 and 40 plies), and two notch 
lengths (1 and 4 inches). The notches were in the shape of ovaloid slits with an end radius of 
0.125-inch Specimen geometry is shown in figure 171. There were 12 different specimen types 
consisting of the laminate type, laminate thickness, and notch length. Three replicates of each 
specimen were fabricated with a specimen width-to-notch length ratio of five. The aspect ratio of 
the test area varied from 2 to 1/2. The laminates were subjected to four-point bending, as shown 
in figure 18. Several test fixtures were fabricated similar to the one shown in figure 18. The need 
for different fixtures was the result of several factors, including the need to accommodate very 
large displacements (>6 inches) for some laminates and large loads (>10,000 lb) for others. The 
fixtures were similar in that they applied load to the laminates through 1-inch-diameter 
aluminum bars. 

Figure 17. Specimen geometry (all dimensions in inches) 

1 W in figure 17 was 5 inches and 20 inches. 
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Figure 18. Four-point bending test fixture 

During the tests, the laminates experienced large deflections before failure occurred. One 
consequence of large deflections involves anticlastic curvature effects. During pure bending of a 
plate, a radius of curvature Rx is formed in the principal bending direction, as shown in figure 19. 
The Poisson effect causes curvature of the plate in the transverse direction with radius Ry. The 
transverse curvature tends to move the fibers near the edge of the plate away from the principal 
axis of curvature causing them to go into tension. It also tends to move the fibers at the center of 
the plate closer to the principal axis of curvature causing them to go into compression. The 
combination of these two effects tends to flatten the plate in the transverse direction, causing it to 
bend into the shape of a cylinder. This, in turn, causes a transverse bending moment to develop 
except at the edges where the transverse moment must be zero. The severity of this effect is a 
function of the Searle parameter b2/(Rxt)), where b is the plate width and t is the plate  
thickness [26, 27]. This effect was amplified in the present tests by applying the loads through 
relatively rigid bars in the test fixture. An FEA was performed on a plate without a notch. Figure 
20 shows a contour plot of the bending moment per unit length along the longitudinal (principal 
bending) direction. As shown, the moment is not quite uniform in the center portion of the plate. 
Figure 21 shows a contour plot of the bending moment per unit length along the transverse 
direction. The maximum value of the transverse moment is approximately one-third that of the 
longitudinal moment. Also, the transverse moment is very nonuniformly distributed. Therefore, 
in the present tests, damage developed in advance of the notch tip into a nonuniform biaxial 
bending field. The degree of biaxiality is a function of plate thickness. In the tests, it was found 
that the far-field transverse strains were negligible (on average, less than 1% of the longitudinal 
strains) for all of the 20-ply laminates. The same was true for the 40-ply laminates with 4-inch 
notches. However, for the 40-ply laminates with 1-inch notches, the transverse strains were, on 
average, 13% of the longitudinal strains. 
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Figure 19. Anticlastic curvature effects with large deflections 

 

Figure 20. Bending moment per unit length in the longitudinal direction 
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Figure 21. Bending moment per unit length in the transverse direction 

4.2  FINITE ELEMENT MODELS 

4.2.1  Progressive Damage Model 

The goal of the progressive damage model is the ability to simulate the propagation of a notch in 
a composite laminate under out-of-plane bending. Williams [28] calculated the crack tip stress 
and displacement fields for a crack in an infinite isotropic plate under bending using classical 
plate theory. He found the usual square root singularity in stress at the crack tip, which can be 
expressed as  
 

 
1 2
2
k z

hr
σ =  (34) 

 
where k1 is the stress-intensity factor. Two studies [16 and 28] have been conducted to calculate 
stress-intensity factors for orthotropic materials under bending. 
 
In a composite material, a zone of damage of considerable influence is known to develop in 
advance of the notch. This is the result of a combination of failure modes, including fiber 
breaking, matrix cracking, etc. Consequently, the usual fracture mechanics procedures that have 
worked successfully in metal structures do not work well for composites [29–31]. The simulation 
of damage progression in a composite is best accomplished with theories that incorporate 
principles from the field of damage mechanics. Several such theories [32–36] that treat damage 
development in the laminate as a whole rather than on a ply-by-ply basis have been successful in 
simulating notch growth under in-plane loading. In the case of bending, there is a nonuniform 
strain through the thickness of the laminate. A theory that treats damage progression at the ply 
level is needed for this case. 
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For progressive damage analysis, the model in ABAQUS for composite materials was used [37]. 
This model is based on the work of Matzenmiller, Lubliner, and Taylor [38]; Hashin and Rotem 
[39]; Hashin [40]; and Camanho and Davila [41]. It considers four different failure modes: 
(1) fiber rupture in tension; (2) fiber buckling and kinking in compression; (3) matrix cracking 
under transverse tension and shearing; and (4) matrix crushing under transverse compression and 
shearing. It uses concepts from the field of continuum damage mechanics. When damage occurs 
(e.g., microcracking, etc.), the effective load-carrying area of the material is considered to be 
reduced, and the concept of an effective stress is introduced to account for the area reduction: 
 

 
ˆ

1 d
σ

σ =
−

 (35) 

 
The quantity d is a damage variable that ranges from 0 (no damage) to 1 (development of a 
macrocrack). From this, an effective stress tensor is introduced as 
 
 ˆ{ } [ ]{ }Mσ = σ  (36) 
 
where {σ} is the usual two-dimensional stress in column-matrix form in principal material 
directions and M is a damage operator given as  
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where df, dm, and ds are damage variables characterizing fiber, matrix, and shear damage, 
respectively. 
 
The constitutive relation for the material is affected by damage and results in a strain-softening 
response given by  
 
 {σ} = [Cd]{ε} (38) 
 
where {ε} is the usual two-dimensional strain in column-matrix form and [Cd] is the effective 
elasticity matrix given by 
 

 

1 21 1
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 (39) 

 
where D = 1-(1-df)(1-dm)υ12 υ21 and E1, E2, G12, υ12, and υ21 are the usual orthotopic elastic 
constants. 



 

22 

The initiation of damage depends on which of the four failure modes is activated. The criteria for 
initiation use Hashin’s theory and are governed by the following relations: 
 
• Fiber tension 11ˆ( 0):σ ≥   
 

 
2 2

11 12ˆ ˆ
1T LX S

σ τ   + α =   
   

 (40) 

 
• Fiber compression 11ˆ( 0):σ <   
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 (41) 

 
• Matrix tension 22ˆ( 0):σ ≥   
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1T LY S
σ τ   + =   

   
 (42) 

 
• Matrix compression 22ˆ( 0):σ <   
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 (43) 

 
where XT is the tensile strength in the fiber direction, XC is the compressive strength in the fiber 
direction, YT is the tensile strength in the direction perpendicular to the fibers, YC is the 
compressive strength in the direction perpendicular to the fibers, SL is the longitudinal shear 
strength, ST is the transverse shear strength, and α is a coefficient that determines the contribution 
of the shear stress to the fiber tensile initiation criterion. 
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The incorporation of strain softening into an FEA usually results in calculations that are mesh 
sensitive. This occurs because, as the mesh is refined, there is a tendency for the damage zone to 
localize to a zero volume. This leads to a prediction of structural failure with zero energy 
dissipation, which is physically impossible. Several techniques have been proposed to address 
this issue. One of the simplest, which was pioneered by Hillerborg [42], is to use a  
stress-displacement law rather than a stress-strain law in the damaged material. The ABAQUS 
program accomplishes this by introducing a characteristic length Lc based on element size. From 
this, equivalent displacements and equivalent stresses are defined for the four modes of failure as 
follows. 
 
• Fiber tension 11ˆ( 0):σ ≥  
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• Fiber compression 11ˆ( 0):σ <  
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• Matrix tension 22ˆ( 0):σ ≥  
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• Matrix compression 22ˆ( 0):σ <  
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For a given failure mode, the stress-displacement law takes on the form shown in figure 22. The 
part of the curve with a positive slope (OA) follows the usual linear elastic relationship and can 
be expressed as  

 

0
0
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eq eq
eq

δ
σ = σ

δ
 (52) 

 

 

Figure 22. Stress-displacement constitutive law used in ABAQUS 

The apex of the cure (A) represents the initiation of damage. Displacement beyond this point 
results in a decreasing stress. This part of the curve can be represented by 
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After experiencing damage, the material unloads and reloads along line OB, which has a smaller 
slope than the original line OA. This reduced slope is accounted for using the damage variable d 
as  
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Combining the last three equations with equation 35 gives the damage variable as 
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When running an analysis model in ABAQUS, the following parameters must be specified: XT, 
XC, YT, YC, SL, ST, α, and the dissipation energies (area under OAC) for each failure mode: Gft, 
Gfc, Gmt, and Gmc. 
 
4.2.2  Mesh Sensitivity Analysis 

Finite element mesh sensitivity is known to be a problem with progressive damage models that 
incorporate strain softening to represent damage development (i.e., the solution does not 
converge with mesh refinement). To investigate this issue in the progressive damage model for 
composites in ABAQUS, analyses were performed on one test laminate (20 plies thick with 50% 
0° plies) containing a 1-inch-long notch subjected to bending. Models were constructed using 
four different mesh densities. The coarsest mesh is shown in figure 23. This is a half-symmetry 
model. Although this assumption is not strictly correct because there is some weak coupling 
between bending and twisting, it was found to have a negligible effect on the results. A close-up 
view of the mesh near the notch tip is shown in figure 24, where it can be observed that there are 
16 elements around the arc of the notch tip (total elements in the model = 750). Figure 25 shows 
a similar close-up view of the finest mesh that illustrates that there are 64 elements around the 
arc of the notch tip (total elements in the model = 6300). The failure moment per unit length was 
calculated for each mesh. A plot of failure moment per unit length versus the number of elements 
around the arc of the notch tip is shown in figure 26. The failure load increases with mesh 
refinement. This behavior occurs because the strength of an individual element depends on its 
size. To demonstrate this, an analysis was performed on a single square-shaped element 
subjected to a pure bending moment. Three different element edge lengths were considered: 
0.05, 0.01, and 0.005 inch A plot of bending moment per unit length versus curvature for each 
element size is shown in figure 27. The maximum sustainable moment per unit length increases 
as the element size decreases. 
 

 

Figure 23. Coarsest finite element mesh for a laminate with a 1-inch-long notch 



 

26 

 

Figure 24. Close-up view of the notch tip for the coarsest mesh 

 

Figure 25. Close-up view of the notch tip for the finest mesh 
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Figure 26. Failure moment per unit length vs the number of elements around the notch tip 

 

Figure 27. Bending moment per unit length vs curvature for elements with three  
different edge lengths 

This behavior is linked to the method that ABAQUS uses to model damage progression 
described earlier. ABAQUS introduces a characteristic length, which is equal to the square root 
of the element area. If a single ply in simple tension is in the 1-direction, then the strain is 
ε11 = δeq/L (figure 22). For the simple tension case, σeq

o = X. The strain at the onset of damage is 
X/E1, where E1 is the elastic modulus in the 1-direction. The strain at complete failure (total loss 
of load-carrying capacity) is εf = 2GIc/(XL). The behavior in compression is similar. A plot of the 
stress-strain curve for elements with edge lengths of 0.05 and 0.01 inch is shown in figure 28 for 
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compression loading in the 1-direction. As the element size decreases, the amount of strain 
softening after initiation of damage decreases. To see how this would affect a laminate under 
bending, consider a laminate with the following lay-up (0/90/90/0/0/90/90/90/90/90)s. This 
simple lay-up was chosen so that almost all of the load would be carried by the 0° plies. Plots of 
moment per unit length versus curvature for two element sizes are shown in figure 29. The 
outside surface ply on the compression side would reach the damage initiation point first. The 
load-carrying capacity of this ply would be degraded with increasing strain according to the 
stress-strain curves shown in figure 28. Because the outside surface plies in the larger element 
would shed load more rapidly than those in the smaller element, the total load capacity of the 
larger element is less than the smaller element, as expected. 
 

 

Figure 28. Stress-strain curves for a single ply modeled with elements with two  
different edge lengths 

 

Figure 29. Bending moment per unit length vs curvature for elements with two different 
edge lengths for a laminate with a simple lay-up 
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The primary conclusion from this is that the analyst should account for the fact that the strength 
of an element is size dependent when creating a mesh. The usual practice of creating a graded 
mesh ranging from fine to course with distance from a stress concentration may be problematic. 
Elements of relatively equal size should be used in areas where damage is expected to develop. 
Fortunately, the mesh density appears to have a weak influence on failure load for this damage 
model. 
 
4.2.3  Delamination Modeling 

The delamination between plies was modeled using the Virtual Crack Closure Technique 
(VCCT) [43]. This technique uses the principles of linear elastic fracture mechanics and allows 
crack propagation when a critical value of the strain energy release rate is attained. The crack 
must propagate along a predefined path at the interface between elements. The strain energy 
release rate is calculated from the energy required to close the crack over one element length. 
Crack growth is assumed to occur when the following criterion is met 
 

 
I II III

Ic IIc IIIc

G G G
G G G

+ +  (56) 

 
where Gj is the strain energy release rate for mode j (j = I, II, III), and Gjc is the critical strain 
energy release rate for mode j. The critical strain energy release rate must be determined from 
interlaminar fracture tests. 
 
4.2.4  Finite Element Models 

Two finite element models were constructed—one that allowed delamination between plies and 
one that did not. The model that allowed delamination was composed of eight-node continuum 
shell elements stacked through the thickness of the laminate, as shown in figure 30, for a 
1-inch-long notch. Only one-half of the plate was modeled. Although this symmetry assumption 
is not strictly valid because of some weak coupling between bending and twisting, it had 
negligible effect on the failure load. The interior interfaces between the element layers were 
allowed to debond according to the VCCT model. Various locations of the interfaces were 
explored to determine their effect on failure load, as described in the next section. The model that 
did not allow delamination was composed of a single layer of four-node conventional shell 
elements. Both models were constructed for laminates with a 4-inch-long notch (figure 31). 
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Figure 30. Half-Symmetry finite element model for laminates with a 1-inch notch 

 

Figure 31. Half-symmetry finite element model for laminates with a 4-inch notch 

4.3  TEST RESULTS AND DAMAGE ANALYSIS 

During the four-point bending tests, the laminates experienced large deflections before failure. 
This is shown in figure 32, which shows the reaction forces between the laminate and the bars in 
the test fixture. The loads were normal to the surface of the laminate. As the laminate rotated 
during deflection, a significant horizontal component of force developed in addition to the 
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vertical component. The horizontal forces made a significant contribution to the bending moment 
experienced at the center portion of the laminate where the notch was located (note that the 
horizontal forces are, in general, not equal, resulting in a small axial load effect that was 
superposed on the bending moment at the center). Because the load cell in the test machine 
recorded only the vertical component of the load, it could not be used to determine the bending 
moment at the center. Therefore, it was necessary to determine the bending moment using strain 
gage output coupled with analysis results. Strain gages were mounted on the specimens at a point 
representing strain in the far field. A comparison of far-field strains on the compression and 
tension sides of the specimen from the test and from the theoretical model is shown in figure 33 
for a 20-ply laminate with 50% 0° plies containing a 1-inch notch. The agreement between the 
test results and theoretical predictions was good with the exception that the theory predicted a 
slightly higher failure strain for this case. Considering all cases, the agreement between 
measured strain and predicted strain was generally good as load increased (the only disagreement 
was the load point at maximum strain). Therefore, some confidence exists that the model 
represents the response of the laminate for loads below the ultimate load. The analysis results 
were used to determine the test failure load in the following manner. It was assumed that the 
ultimate load is reached when the measured far-field strain peaks. At this strain, the response 
state of the model was checked. The far-field bending moment per unit length averaged over the 
width of the specimen was taken as the test failure load. Table 1 gives this load for each 
specimen. 
 

 

 

Figure 32. Applied loads with large deflection effects 
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Figure 33. Far-field strain vs crosshead displacement 
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Table 1. Failure moment per unit length measured in the tests 

Specimen Percent 0° Plies Number of Plies 
Notch Length 

(inch) 
Test Failure Moment 

(in-lb/inch) 
f-1-5-1 10 20 1 193 
f-1-5-2 10 20 1 173 
p-1-5-1 30 20 1 186 
p-1-5-2 30 20 1 200 
p-1-5-3 30 20 1 192 
n-1-5-1 50 20 1 231 
n-1-5-2 50 20 1 246 
n-1-5-3 50 20 1 260 
fp-1-5-1 10 40 1 589 
fp-1-5-2 10 40 1 615 
fp-1-5-3 10 40 1 611 
ar-1-5-1 30 40 1 735 
ar-1-5-2 30 40 1 792 
ar-1-5-3 30 40 1 693 
an-1-5-1 50 40 1 919 
an-1-5-2 50 40 1 916 
an-1-5-3 50 40 1 884 
f-4-20-1 10 20 4 209 
f-4-20-3 10 20 4 208 
p-4-20-1 30 20 4 191 
p-4-20-2 30 20 4 198 
p-4-20-3 30 20 4 175 
n-4-20-1 50 20 4 233 
n-4-20-2 50 20 4 224 
n-4-20-3 50 20 4 226 
fp-4-20-1 10 40 4 681 
fp-4-20-2 10 40 4 605 
fp-4-20-3 10 40 4 657 
ar-4-20-1 30 40 4 641 
ar-4-20-2 30 40 4 675 
ar-4-20-3 30 40 4 688 
an-4-20-1 50 40 4 989 
an-4-20-2 50 40 4 943 
an-4-20-3 50 40 4 931 
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During the tests, the 20-ply laminates exhibited negligible visible damage before failure, which 
was sudden and usually resulted in the laminate breaking into two pieces, as shown in figure 34. 
The 40-ply laminates exhibited a gradual progression of damage, which usually began with 
wrinkling of the outer ply on the compression side. This was followed by delamination at the 
outermost 0° ply and fracture of the plies between the outermost 0° ply and the surface. There 
was also some delamination between the second outermost 0° ply and the surface. The tension 
side of the laminate generally exhibited considerably less visible damage. This is shown in figure 
35, which shows a close-up view of the laminate edge (the light-colored plies are the 0° plies). In 
some cases, it was observed that the plies between the outermost 0° ply and the surface buckled 
before fracturing, as shown in figure 36(a). This phenomenon was captured by the model, as 
shown in figure 36(b). 
 

 

Figure 34. Fracture of a 20-ply laminate 

 

Figure 35. Delamination at the 0° plies (lighter-colored plies) 
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(a) Test 
 

 
(b) Model 

Figure 36. Postdelamination buckling 

The first calculations were performed using the models with no delamination interfaces, as 
described in the previous section. For the 20-ply laminate, model results for the six cases 
examined varied from experiment, ranging from 11.5% lower to 9.5% higher, with an average 
difference of 2.9% lower. For the 40-ply laminate, model results for the six cases examined 
varied from experiment, ranging from 0.1% lower to 28.4% higher, with an average difference of 
16.9% higher. These results are shown in figures 37–40. 
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Figure 37. Comparison of test results and model predictions of failure moment per unit 
length for 20-ply laminates with a 1-inch-long notch 
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Figure 38. Comparison of test results and model predictions of failure moment per unit 
length for 20-ply laminates with a 4-inch-long notch 
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Figure 39. Comparison of test results and model predictions of failure moment per unit 
length for 40-ply laminates with a 1-inch-long notch 
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Figure 40. Comparison of test results and model predictions of failure moment per unit 
length for 40-ply laminates with a 4-inch-long notch 

Experiments showed that the thicker, 40-ply laminates experienced delamination during fracture, 
allowing plies between the delamination and the surface to buckle outward. This caused a 
redistribution of the stress that led to further delamination and fracturing of additional plies. 
Because the progressive damage models used considered the plies to be perfectly bonded (i.e., no 
delamination interfaces existed in the model), this buckling failure mechanism was not replicated 
in the FEA results. 

To more accurately model the laminate fracture, two delamination interfaces were added to the 
40-ply laminated models. Two interfaces were also added to the 20-ply laminates to determine
their effect. Interfaces were placed below (away from the compression surface) the outermost

Percent 0° Plies 
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compression-side 0° ply and below the second outermost 0° ply. These locations corresponded to 
where delamination was observed in the experiments. 
 
As expected, based on the observed failure modes from the experiments, the addition of these 
interfaces to the models had a small effect on the calculated failure loads for the 20-ply laminates 
and a much greater effect for the 40-ply laminates. For the 20-ply laminate, analysis results, 
based on the six cases examined, varied from the experiment, ranging from 5.3%–9.1%, with an 
average difference of 1.7% compared to 2.9% with no interfaces. For the 40-ply laminate, the 
model results with interfaces varied from experiment, ranging from 18.1% lower to 3.0% higher, 
with an average difference of 6.7% lower compared to 16.9% lower with no interfaces. These 
results are also shown in figures 37–40. 
 
To better understand the effect of delamination on the model, additional interfaces were added. 
In addition to interfaces below the outermost and second outermost 0° plies, interfaces were 
placed below the outermost ply and above the outermost 0° ply, for a total of four interfaces. The 
20-ply, 10% 0° ply laminate was one exception. Only one 0° ply existed on the compression 
side, so only three interfaces were created. In addition, due to the excessively long run times 
associated with the 4-inch notch laminates, only 1-inch laminates were included in this aspect of 
the study. 
 
In general, the additional delamination interfaces had a negligible effect on the calculated 
fracture loads. For the 20-ply laminates with 1-inch notches, the difference between the 
experimentally measured and the model-predicted failure loads varied from an average of 1.5% 
(model higher) with no interfaces, 2.4% (model higher) with two interfaces, to -2.4% (model 
lower) with four (or three as described above) interfaces. For the 40-ply laminates with 1-inch 
notches, the differences varied an average of 23.5% (model higher) with no interfaces, 1.7% 
(model higher) with two interfaces, and 6.4% (model higher) with four interfaces. These results 
are also shown in figures 37–40 and are summarized in table 2. 
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Table 2. Comparison of failure moment per unit length from the test and from the model 

Number 
of Plies 

Notch Length 
(inch) 

0° Plies 
(%) 

FEA: Difference From Experiment 
No Interfaces 

(%) 
Two Interfaces 

(%) 
Four Interfaces 

(%) 
20 1 10 -2.7 7.1 1.7%  

30 -2.2 1.3 -5.4 
50 9.5 -1.2 -3.4 

4 10 -11.5 9.1  
30 -3.7 -0.5  
50 -6.4 -5.3  

40 1 10 21.2 3.0 8.7 
30 20.8 -0.9 1.8 
50 28.4 3.0 8.7 

4 10 14.8 -18.1  
30 15.7 -15.6  
50 0.1 -11.5  

 
5.  TASK 5: SENSITIVITY ANALYSIS OF DAMAGE PARAMETERS 

The progressive damage model in ABAQUS requires that ply strength properties (damage 
initiation) and ply dissipation energies (damage evolution) be specified (see section 4.2). These 
properties are generally determined through coupon tests and analysis, and in many cases, the 
uncertainty in these values is high. The objective of this task was to determine the sensitivity of 
the laminate failure moment per unit length to these parameters. This was accomplished by 
performing a systematic series of numerical experiments using the design of experiments 
methodology. 
 
The material selected for this study was a carbon fiber/epoxy matrix composite with the 
properties given in table 3 [44]. The damage parameter properties are material properties 
associated with the Hashin progressive damage model described in section 4.2.1. The laminate 
that was studied had the following lay-up: [-45/0/0/45/90/-45/0/0/45/90]s. This laminate has 
bending stiffness properties with D11 = 3473 in-lb and D22 = 1602 in-lb. The orthotropy is such 
that the stiff direction has approximately double the stiffness in the soft direction. The sensitivity 
study was performed for both the stiff and soft directions of the laminate with a 1-inch-long 
notch under four-point bending. 
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Table 3. Selected Carbon Fiber/Epoxy Matrix Composite Properties 

Elastic Properties Value 
E1 (Mpsi) 21.3 
E2 (Mpsi) 01.65 
v12 00.3 
G12 (Mpsi) 00.885 
G13 (Mpsi) 00.885 
G23 (Mpsi) 00.565 

Damage Parameter Properties Value 
XT (psi) 251,000 
XC (psi) 200,000 
YT (psi) 9,645 
YC (psi) 30,000 
SL (psi) 15,880 
ST (psi) 11,300 
GFT (lb/in) 513 
GFC (lb/in) 447 
GMT (lb/in) 5.71 
GMC (lb/in) 25 

 
Laminate failure analyses were performed for each of the ten damage parameters at a low and a 
high value, with the low value 20% below the nominal value and the high value 20% above the 
nominal value. A complete 210 factorial design for this case would have required 1024 computer 
runs, which was not practical. Therefore, a fractional factorial design with 210-6 (=16) runs was 
performed, which results in a Resolution III design in which no main (single factor) effects are 
aliased (confounded) with any other main effect, but main effects are aliased with two factor 
interactions, and two factor interactions may be aliased with each other [45]. Table 4 shows the 
labels given to each of the damage parameters. Table 4 also gives a list of the two factor 
interactions that are aliased with each main effect. Aliased factors greater than two were omitted 
from this table because it is assumed that they are negligible in comparison. Table 5 shows the 
experimental design matrix, which gives the magnitudes of the factors for each computer run, 
where -1 indicates a low value of the parameter and +1 indicates a high value of the parameter. 
The effect of a factor is defined as the difference between the average response at the low level 
of the factor and the average response at the high level of the factor. 
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Table 4. Factor labels for damage parameters and aliases 

Damage Parameter Factor Label Two Factor Aliases 
XT A FJ and BK 
XC B GJ and AK 
YT C HJ and EK 
YC D EJ and HK 
SL E DJ and CK 
ST F AJ and GK 

GFT G BJ and FK 
GFC H GJ and DK 
GMT J DE, AF, BG, and CH 
GMC K AB, CE, FG, and DH 

Table 5. Factor magnitudes for each computer run 

Run A B C D E F G H J K 
1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 
2 1 -1 -1 -1 1 -1 1 1 -1 -1 
3 -1 1 -1 -1 1 1 -1 1 -1 -1 
4 1 1 -1 -1 -1 1 1 -1 1 1 
5 -1 -1 1 -1 1 1 1 -1 -1 1 
6 1 -1 1 -1 -1 1 -1 1 1 -1 
7 -1 1 1 -1 -1 -1 1 1 1 -1 
8 1 1 1 -1 1 -1 -1 -1 -1 1 
9 -1 -1 -1 1 -1 1 1 1 -1 1 

10 1 -1 -1 1 1 1 -1 -1 1 -1 
11 -1 1 -1 1 1 -1 1 -1 1 -1 
12 1 1 -1 1 -1 -1 -1 1 -1 1 
13 -1 -1 1 1 1 -1 -1 1 1 1 
14 1 -1 1 1 -1 -1 1 -1 -1 -1 
15 -1 1 1 1 -1 1 -1 -1 -1 -1 
16 1 1 1 1 1 1 1 1 1 1 

 
A Pareto plot of the main effects (which represents the magnitude of the effect of a particular 
parameter on the laminate bending strength) is shown in figure 41 for the stiff direction of the 
laminate. It is clear from this plot that the four-ply damage parameters in the fiber direction have 
a much greater influence on failure moment than any of the other damage parameters. This is 
also shown in figure 42, which shows a normal quantile-quantile plot [46] of the effects of the 
damage parameters. Insignificant effects tend to fall along a straight line on this type of plot, but 
significant effects are well removed from the line. Again, the four-ply damage parameters in the 
fiber direction stand out as being the significant ones. 
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Figure 41. Pareto plot of the damage parameter effects for the stiff  
direction of the laminate 
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Figure 42. Normal quantile-quantile plot of the damage parameter effects on the failure 
moment for the stiff direction of the laminate 

To get a more detailed comparison of the four largest effects (the damage parameters in the fiber 
direction), all damage parameters were set to their nominal values, and calculations were 
performed varying one factor at a time from a low value (20% below the nominal value) to a 
high value (20% above the nominal value). These results are shown in figure 43, which gives a 
plot of failure moment (normalized by dividing by the failure moment when all damage 
parameters are at their nominal values) versus a damage parameter (normalized by dividing it by 
its nominal value). It is evident that the effect of the damage parameters on the failure moment 
per unit length is generally nonlinear. The effect of the tension energy is almost linear. The 
effects of the tension strength and compression strength have decreasing slopes with increasing 
factor values. The effect of the compression energy has an increasing slope with an increasing 
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factor value. It should also be noted that a ±20% change in any of the damage parameter values 
causes a change in failure moment that is less than ±8%. 
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Figure 43. Normalized plot of the damage parameter effects on the failure moment per unit 
length for the stiff direction of the laminate 

These calculations were repeated for the soft direction of the laminate. A Pareto plot of the main 
effects is shown in figure 44 for this case. As in the previous case, the four-ply damage 
parameters in the fiber direction had a much greater influence on failure moment than any of the 
other damage parameters. The normal quantile-quantile plot (figure 45) provides a similar 
conclusion. The effects of varying the four dominant parameters one at a time is shown in  
figure 46. In this case, all the effects have decreasing slopes with increasing factor values. Also, 
a ±20% change in any of the damage parameter values causes a change in failure moment that is 
less than ±6%. 
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Figure 44. Pareto Plot of the damage parameter effects on the failure moment per unit 
length for the soft direction of the laminate 
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Figure 45. Normal quantile-quantile plot of the damage parameter effects on the failure 
moment per unit length for the soft direction of the laminate 
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Figure 46. Normalized plot of the damage parameter effects on the failure moment per unit 
length for the soft direction of the laminate 

The overall conclusion from these results is that the failure of notched laminates under bending 
is dominated by the ply properties in the fiber direction. Also, large changes in these properties 
(±20%) tended to produce small changes in failure load (<±7%). The relatively low sensitivity of 
failure load to these properties is a desirable outcome from a design perspective because it 
indicates a progressive damage analysis will not require highly accurate values of these 
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properties to be determined experimentally. These conclusions are valid only for thin laminates 
where delamination does not appear to have an important effect. 
 
Because failure load is defined in this report as the maximum load carried by the panel, the 
maximum load consistently occurred after some damage had propagated. Therefore, the 
magnitude of the maximum load is a function of when damage initiates and when it propagates. 
Damage initiation, as shown in equations 40–43, depends on the six strength parameters. 
Damage propagation, as described in section 4.2.1, depends on the four energy parameters. The 
inclusion of a number of damage parameters and their interactions leads to failure load not being 
a simple function of the fiber strength alone. However, damage initiation has a one-to-one 
correlation to fiber strength. 
 
6.  CONCLUSIONS 

The broad objective of this research was to determine the failure modes of notched laminates 
under bending and to evaluate the capability of some currently existing models to predict 
failures. A number of aspects of this problem were studied that resulted in the following 
conclusions: 
 
• The elastic strain concentration factor near the notch is influenced by transverse shear 

effects, and these should be included in finite element models. Three-dimensional,  
free-edge effects are also evident, but dissipate rapidly with distance from the edge. 

• Simple semi-empirical failure criteria, which have been useful for in-plane loading, do 
not appear to be an effective tool for using small notch data to predict failure for 
laminates with larger notches under bending. 

• Failure progression in thin laminates appears to be different from that in thick laminates. 
Thin laminates exhibit negligible visible damage before failure, which is usually sudden 
and results in the laminate breaking into two pieces. Thick laminates exhibit a gradual 
progression of damage, which is usually confined to the compression side of the 
laminate. Also, delamination, followed by buckling of the plies between the delamination 
site and the surface on the compression side of the laminate, is an important failure 
mechanism for thick laminates. 

• The progressive damage model for composite materials in the ABAQUS® program shows 
promise in its ability to predict failure in notched laminates under bending, including 
modeling complex delamination/buckling response. 

• The failure load for notched laminates under bending is predominantly controlled by the 
ply properties in the fiber direction and is not very sensitive to changes in these 
properties. This conclusion may not be valid for failure initiation. These conclusions are 
valid only for thin laminates where delamination does not appear to have an important 
effect. 

• Failure load predictions, with delamination interfaces present, for the 4-inch-long notch 
cases, particularly the 40-ply specimens, tended to be less accurate and lower than for the 
1-inch-long notch cases. A possible cause of this behavior may be related to the values of 
ply delamination fracture toughness used in the models. It is common for the resistance to 
fracture to increase with growing crack size. This phenomena is manifested in the 
composite specimens used in this work as a crack initiation value of fracture toughness 
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and a crack propagation value of fracture toughness. To date, the work in this study has 
exclusively used the initiation toughness. Given that the initiation value is less than the 
propagation value and that the 4-inch cases have more area for delamination than the  
1-inch cases, this may be the cause of the low predicted values. The next phase of this 
project is intended to explore the impact of incorporating propagating toughness values in 
the model as appropriate. 
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